Project Name: GLCPS

SCI # 51053.00

WQU #1

Equation:

$$Q_{0.5 \ or \ 1} = (q_u)(A)(WQV)$$

Where:

 $Q_{0.5}$ = flow rate associated with the first 1/2 -inch of runoff

Q₁ = flow rate associated with the first 1 -inch of runoff

q_u = the unit peak discharge, in csm/in

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1/2-inch or 1-inch*)

^{*} use 1-inch if in/near critical resource area

Variable	Value
A (ft ²)	5,276
ft²/mi²	0.000000035870
CN	98
Tc	0.1
I _a /P**	0.034
q_{u}	774
WQV	0.5

Q_{0.5}= 0.073 CFS

 $**I_a/P = 0.058$ for 1/2-inch runoff OR 0.034

for 1-inch of runoff

Coversion Rate: 1 ft²=3.587x10⁻⁸

Figure 3: For First 1-inch Runoff, Ia/P Curve = 0.034, Relationship Between Unit Peak Discharge and Time of Concentration for NRCS Type III Storm Distribution

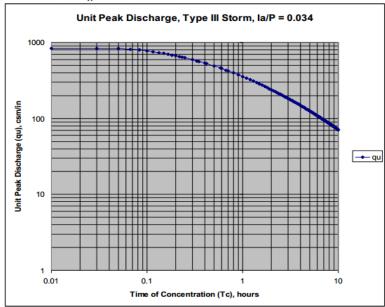


Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, for Type III Stor Distributio

Tc	qu	Tc	qu	1	Tc	qu
(Hours)	(csm/in)	(Hours)	(csm/in)	l	(Hours)	(csm/in)
0.01	835	2.7	197	1	7.1	95
0.03	835	2.8	192	ł	7.2	94
0.05	831	2.9	187	1	7.3	93
0.067	814	3	183	1	7.4	92
0.083	795	3.1	179	1	7.5	91
0.1	774	3.2	175	1	7.6	90
0.116	755	3.3	171	1	7.7	89
0.133	736	3.4	168	1	7.8	88
0.15	717	3.5	164	1	7.9	87
0.167	700	3.6	161	1	8	86
0.183	685	3.7	158	1	8.1	85
0.2	669	3.8	155	1	8.2	84
0.217	654	3.9	152	1	8.3	84
0.233	641	4	149	1	8.4	83
0.25	628	4.1	146	1	8.5	82
0.3	593	4.2	144	1	8.6	81
0.333	572	4.3	141	1	8.7	80
0.35	563	4.4	139	1	8.8	79
0.4	536	4.5	137	1	8.9	79
0.416	528	4.6	134		9	78
0.5	491	4.7	132		9.1	77
0.583	460	4.8	130		9.2	76
0.6	454	4.9	128		9.3	76
0.667	433	5	126		9.4	75
0.7	424	5.1	124]	9.5	74
8.0	398	5.2	122		9.6	74
0.9	376	5.3	120]	9.7	73
1	356	5.4	119]	9.8	72
1.1	339	5.5	117]	9.9	72
1.2	323	5.6	115]	10	71
1.3	309	5.7	114]		
1.4	296	5.8	112]		
1.5	285	5.9	111]		
1.6	274	6	109			
1.7	264	6.1	108			
1.8	255	6.2	106			
1.9	247	6.3	105			
2	239	6.4	104			
2.1	232	6.5	102			
2.2	225	6.6	101			
2.3	219	6.7	100	1		

2.4

2.5

2.6

6.8

6.9

Figure 1: For First ½-inch Runoff, la/P Curve = 0.058, Relationship Between Unit Peak Discharge and Time of Concentration for NRCS Type III Storm Distribution.

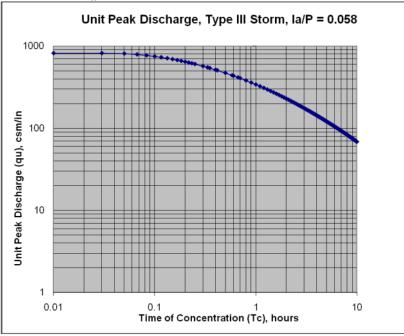


Figure 2: For First ½-inch of Runoff, Table of qu values for Ia/P Curve = 0.0.058, listed by tc, for Type III Storm Distribution

Tc	qu	Tc	qu	ı	Tc	qu
(Hours)	(csm/in)	(Hours)	(csm/in)		(Hours)	(csm/in)
0.01	821	1.8	246		5.3	116
0.03	821	1.9	238		5.4	115
0.05	813	2	230		5.5	113
0.067	794	2.1	223		5.6	112
0.083	773	2.2	217		5.7	110
0.1	752	2.3	211	1	5.8	109
0.116	733	2.4	205		5.9	107
0.133	713	2.5	200		6	106
0.15	694	2.6	194		6.1	104
0.167	677	2.7	190	1	6.2	103
0.183	662	2.8	185	1	6.3	102
0.2	646	2.9	181	1	6.4	100
0.217	632	3	176	1	6.5	99
0.233	619	3.1	173	1	6.6	98
0.25	606	3.2	169	1	6.7	97
0.3	572	3.3	165	1	6.8	96
0.333	552	3.4	162		6.9	94
0.35	542	3.5	158		7	93
0.4	516	3.6	155		7.1	92
0.416	508	3.7	152		7.2	91
0.5	472	3.8	149		7.3	90
0.583	443	3.9	147		7.4	89
0.6	437	4	144		7.5	88
0.667	417	4.1	141		7.6	87
0.7	408	4.2	139		7.7	86
0.8	383	4.3	136		7.8	85
0.9	361	4.4	134		7.9	84
1	342	4.5	132		8	84
1.1	325	4.6	130		8.1	83
1.2	311	4.7	128		8.2	82
1.3	297	4.8	126		8.3	81
1.4	285	4.9	124		8.4	80
1.5	274	5	122		8.5	79
1.6	264	5.1	120		8.6	79
1.7	254	5.2	118		8.7	78

Tc	qu				
(Hours)	(csm/in)				
8.8	77				
8.9	76				
9	76				
9.1	75				
9.2	74				
9.3	74				
9.4	73				
9.5	72				
9.6	72				
9.7	71				
9.8	70				
9.9	70				
10	69				